SUPPLEMENTARY TABLE 2. Parameters for dynamic measles model to measure the impact of public health interventions on measles outbreak size - Chicago, Illinois, 2024

Parameter	Median	Method	Notes

Vaccine efficacy (infant) $\quad 84 \% \quad$| Derived from |
| :---: |
| literature $^{+}$ |

Vaccine efficacy (not infant)	92.5\%	Derived from literature †

Delay from vaccination to immunity (days)	7 days	Derived from literature $^{+}$	-
Latent period (preinfectious component of incubation period)	8 days	Derived from literature $^{+}$	-

Infectious period	5 days	Derived from literature §

		- Cases are ascertained after an exponentially distributed delay with mean $=2.5$ days.		
Time from infectiousness onset to case ascertainment	2.5 days	Derived from literature		-This parameter is intended to correspond more directly to the difference between symptom and rash onset.
:---				

Abbreviation: ABC = approximate Bayesian Computation; PERT = Program Evaluation and Review Technique.

[^0]
[^0]: * The PERT distribution is a modified beta distribution, characterized by a minimum value a, maximum value c, mode b, and shape s. The mean is $\mu=(a+s b+c) /(s+2)$. The beta shape parameters are $\alpha=(\mu-a)(2 s-a-c) /(c-\mu)(b-a)$ and $\beta=\alpha(c-\mu) /(c-a)$.
 + https://doi.org/10.1056/NEJMoa1602295
 ${ }^{5}$ https://doi.org/10.1016/S2468-2667(23)00130-5
 " https://doi.org/10.1093/infdis/jir102

